Six-flow operations for catalyst development in Fischer-Tropsch synthesis: bridging the gap between high-throughput experimentation and extensive product evaluation.
نویسندگان
چکیده
Design and operation of a "six-flow fixed-bed microreactor" setup for Fischer-Tropsch synthesis (FTS) is described. The unit consists of feed and mixing, flow division, reaction, separation, and analysis sections. The reactor system is made of five heating blocks with individual temperature controllers, assuring an identical isothermal zone of at least 10 cm along six fixed-bed microreactor inserts (4 mm inner diameter). Such a lab-scale setup allows running six experiments in parallel, under equal feed composition, reaction temperature, and conditions of separation and analysis equipment. It permits separate collection of wax and liquid samples (from each flow line), allowing operation with high productivities of C5+ hydrocarbons. The latter is crucial for a complete understanding of FTS product compositions and will represent an advantage over high-throughput setups with more than ten flows where such instrumental considerations lead to elevated equipment volume, cost, and operation complexity. The identical performance (of the six flows) under similar reaction conditions was assured by testing a same catalyst batch, loaded in all microreactors.
منابع مشابه
The Effect of Temperature on Product Distribution over Fe-Cu-K Catalyst in Fischer-Tropsch Synthesis
The iron-based catalyst was prepared by a microemulsion method. The composition of the final nanosized iron catalyst, in terms of the atomic ratio, contains 100Fe/4Cu/2K. The experimental techniques of XRD, BET, TEM, and TPR were used to study the phase, structure, and morphology of the catalyst. Fischer-Tropsch synthesis (FTS) reaction test was performed in a fixed bed reactor under pressure o...
متن کاملSynthesis and Characterization of Co-Mn Nanocatalyst Prepared by Thermal Decomposition for Fischer-Tropsch Reaction
Nano-structure of Co–Mn spinel oxide was prepared by thermal decomposition method using [Co(NH3)4CO3]MnO4 as the precursor. The properties of the synthesized material were characterized by X-Ray Diffraction (XRD), Brunauer-Emmett-Teller (BET), Transmission Electron Microscopy (TEM), surface area measurements, Energy-Dispersive X-ray (EDX) spectroscopy analys...
متن کاملModeling and Optimization of Fixed-Bed Fischer-Tropsch Synthesis Using Genetic Algorithm
In this paper, modeling and optimization of Fischer-Tropsch Synthesis is considered in a fixed-bed catalytic reactor using an industrial Fe-Cu-K catalyst. A one dimensional pseudo-homogenous plug flow model without axial dispersion is developed for converting syngas to heavy hydrocarbons. The effects of temperature, pressure, H2 to CO ratio in feed stream, and CO molar flow on the mass flow r...
متن کاملDetermination of the Product Selectivity Model from the Fischer Tropsch Synthesis in a Fixed Bed Reactor
The Fischer-Tropsch synthesis is a catalytic process that can produce a fuel similar to fossil fuels by using primary sources such as agricultural waste and carbon sources that can convert into synthesis gas by superheated steam. All fuel derivatives can be supplied through the Fischer-Tropsch reaction. The synthesis produces a variety of hydrocarbons via parallel and sequential reactions. Howe...
متن کاملA review of Fischer-Tropsch synthesis on the cobalt based catalysts
Fischer-Tropsch synthesis is a promising route for production of light olefins via CO hydrogenation over transition metals. Co is one of the most active metals for Fischer-Tropsch synthesis. Some different variables such as preparation parameters and operational factors can strongly affect the selectivity of Fischer-Tropsch synthesis toward the special products. In the case of preparat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Review of scientific instruments
دوره 84 12 شماره
صفحات -
تاریخ انتشار 2013